
Neural Network for Segmentation of Medical Images

by

Asif Ahmad

Supervised by

Dr. Noor Badshah

A thesis

submitted to the University of Engineering and Technology

in partial fulfillment for the degree requirement of

Master of Science

in

Mathematics

Session: 2018-2020

Peshawar, Khyber Pakhtunkhwa, Pakistan.



Dedication

To my parents, Mr. and Mrs. Gulsambar Khan, and my younger brother, Hanif

Ahmad.

i



Acknowledgement

Almighty ALLAH has been very kind and has bestowed His blessings on me at

every moment of my life. I am very much blessed to have parents whose quest for

education and selfless prayers have brought me to where I am today; I owe my life

to them. I would like to express my special thanks of gratitude to my supervisor,

Dr Noor Badshah, for his invaluable support and guidance during my coursework

and research at UET Peshawar; and specially for giving me the golden opportunity

to work on this wonderful project. My heartfelt thanks to Dr Nasru Minallah,

associate professor at computer system engineering department UET Peshawar,

for giving an opportunity to work in a project during my coursework and for his

financial assistance for the project. I am utterly thankful to Dr Nudrat Aamir, HOD

Basic Sciences CECOS University of IT & Emerging Sciences Peshawar, for her

support which helped me a lot in doing my research work with full concentration.

I am deeply indebted to Mr. Irfan Ul Mulk for all his generous and fatherly

support in the darkest period of my life. I would also like to thank my colleagues,

Dr Asmat Ullah, Mr. Fahim Ullah (Ph.D), Mr. Mati Ullah (P.hD), Ms. Nasra

Nadeem (P.hD), Ms. Hadia Atta (P.hD), Ms. Hena Rabbani (P.hD), Ms. Muniba

Ashfaq (Ph.D) and Mahmood Ul Hassan (MS), at UET Peshawar with whom I

shared my study time and came to know about many new things through useful

discussions. At last, but not the least, I am immensely grateful to my friends,

especially Abdur Raqeeb and Mujeeb Ullah, sisters, Samreena & Shehla, younger

brothers and fiancee, Shaista Rahim, for their prayers, encouragement and love.

ii



Abstract

The success of Deep Neural Networks (DNNs) is largely impacted by training of

large networks on big data sets. The Greatest breakthrough was achieved in this

field in 2012 by successful training of a large network, AlexNet, on ImageNet data

set containing about 1 million images. U-Net architecture, a DNN based on Con-

volutional Neural Networks (CNNs), immensely advanced segmentation of medical

images. In the present times, neural networks have outperformed other state-of-

the-art approaches in segmentation of images. In this thesis, we present a neural

network based on the CNNs for segmentation of medical images. The network,

ResBCU-Net, is an extension of the U-Net which utilizes Residual blocks, Batch

normalization and Bi-directional ConvLSTM. In addition, we present an extended

form of ResBCU-Net, ResBCU-Net(d=3), which utilizes densely connected layers

in its bottleneck section. The proposed neural network is trained and evaluated

on ISIC 2018 data set, which is publicly available data set containing 2594 skin

images, melanoma and non-melanoma. The network inferences segmentation of

the images more accurately than other state-of-the-art alternatives.
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Chapter 1

Introduction

Analysis of medical images is a vital part of diagnosis and treatment of diseases.

Manual diagnosis of diseases depends on availability of advance appliances and high

skilled doctors. Besides, it is costly, erroneous and tedious process. A computer

aided diagnosis (CAD) system can be good choice here, as it can assist doctors in

better diagnosis and treatment of diseases in large number of people in short time

in a better way. CAD uses images processing techniques for analysis of medical

images. Segmentation has a great value in the images processing. It divides the

images into affected and unaffected region. The diagnostic process results are

highly dependent on the accuracy of performed segmentation. Nowadays, many

supervised and unsupervised techniques are used for the task of segmentation.

Supervised techniques use active contours [1, 2], fuzzy sets [3, 4] and machine

learning algorithms like k-mean clustering [5], morphological operations [6], etc.

While, unsupervised techniques come under deep learning. Deep learning uses

convolutional neural networks (ConvNet/CNNs)[7, 8, 9]. Over the couple of years

CNNs have outperformed other approaches in this field.

Convolutional Neural Networks (ConvNet/CNNs) are one of the approaches in

the field of computer vision, where the purpose is to enable machines to replicate

function of humans’ brain. CNNs have been designed for multiple tasks, like,

image and video recognition, image classification and segmentation, detection, and

solving inverse problem in image processing, imitating humans ability of perceiving

them in a natural way. Architecture of CNN consists of layers of convolutions, max

poolings, and activation functions, which mimic the pattern of neurons in a human

brain.

Convolutional neural networks (CNNs) were being used long before 1990s [10],

but they were limited due to size of then available networks and training data. The

first breakthrough achieved by krizhevsky et al. [11] in 2012, named as AlexNet, us-

ing training of large network consists of 18 layers and millions of parameters on the
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imageNet data and 1 million of training images. After this a large and much deeper

networks have been trained [12]. Since 2010 deep convolutional networks have out-

performed the conventional state-of-the-art approaches towards visual recognition

tasks, like, [13] and [11]. At first CNNs were used for classification of images.

Ciresan et al. [14] presented a network for automatic segmentation of electron mi-

croscopy images. For the purpose, the authors have used CNN as a pixel classifier.

A square window, centered at each pixel, is used for the prediction of the label

of each pixel. Each window pixel is mapped into a neuron, which is followed by

convolution and max-pooling layers.

A major breakthrough was achieved in this field in 2015 by U-Net architec-

ture [7], an encoder-decoder based neural network proposed by Ronneberger et al.

for segmentation of biomedical images. The network consists of two symmetric

paths, encoding and decoding path. Convolutions, activation functions and max

pooling operations are being used in the network. Nowadays, almost all deep neu-

ral networks presented for segmentation task of medical images are based on the

U-Net and they have outperformed other state-of-the-art networks for the task

[15, 8, 16, 9].

In this work, we propose a U-Net [7] based encoder-decoder neural network for

segmentation of skin lesion. The network, ResBCU-Net, utilizes power of residual

blocks [17], batch normalization [18] and BConvLSTM [19] network for the task.

In the network, we enhance the encoding path with residual blocks and batch

normalization, and the decoding path is enhanced by using BConvLSTM network

in the path. In addition, we also present a densely connected form of ResBCU-Net,

where we have made changes in the bottleneck section of our model like BCDU-Net

[8]. More details of our work are given in chapter 4.

Thesis Outline

Other chapters of the thesis are arranged as follows:

Chapter 2: This chapter contains some basic terms which are used as building

blocks for neural networks.

Chapter 3: In this chapter, we give an insight into background of neural networks

and discuss related works in the literature.

Chapter 4: In this chapter, we explain our work in detail.

Chapter 5: This chapter concludes our work with a conclusion note.

2



Chapter 2

Basic Terms

This chapter provides an insight into some basic terms which are very useful to

understand the work.

2.1 Digital Image

An image may be defined as a two dimensional function, f(x, y), where x and y

are spatial co-ordinates and the amplitude of f at any co-ordinate (x, y) is called

intensity or gray level of the image at that point. An image is said to be a digital

image when x, y, and the amplitude of f are all finite and discrete quantities.

In simple words, a digital image is composed of finite numbers, called elements

or objects, arranged in rows or columns. The elements are referred to as picture

elements or pixels. The pixel values lie between 0 and 255, these values represent

the intensity value of black and white, respectively. According to these values

digital images are classified into three main types, Grayscale image, Binary image,

and RGB image. In this thesis, the word ’Image’ refers to ’Digital image’.

2.1.1 Grayscale Image

An image is said to be a grayscale image if the range of the pixel value is 0 to 255,

where black parts of the image are assigned 0’s, and white parts of the image are

assigned 255’s while colors between black and white are assigned values between 0

and 255. An example of grayscale image is given in figure below 2.1. In more concise

way, grayscale image is a matrix where the element of the matrix are numbers from

0 to 255.

3



Figure 2.1: Grayscale image and its one minor part representation as rows and
columns of numbers.

2.1.2 Binary Image

Binary image is an image composed of white and black colors only. Where 0’s are

assigned to black part and 1’s are assigned to white part of the image but some

assigns 1’s to black part and 0’s to white part, as shown in figure 2.2. Binary image

is a matrix where the elements are only 0’s and 1’s.
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Figure 2.2: Binary image and its matrix form.

2.1.3 RGB Image

An RGB image is composed of three matrices which are stacked on one another,

as shown in figure 2.3. The matrices are termed as Red (R), Green (G), and Blue

(B). Each matrix elements range lie from 0 to 255.
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Figure 2.3: RGB image channel wise representation.

2.2 Image Processing

Image processing is a procedure of manipulating an image in order to enhance it

or to extract some information from it. In the process, the input is an image and

the output may be an image or some features and characteristics associated with

the image. There are different forms of image processing, like, image classification,

object detection, registration, pattern recognition, segmentation, etc.

2.2.1 Segmentation

In image processing, segmentation is a process of partitioning or dividing an image

into parts which are called segments. Segmentation highlights or enhances a target

in an image. An image is transformed into black and white parts, where the white

part represents the targeted region of the image, while the black part is considered

as a background of the target, as shown in the figure 2.4.

6



(a) (b)

Figure 2.4: (a): An image, (b): Segmented version of the image.

Segmentation’s goal is to simplify or change representation of an image into

more meaningful and easier form to analyze. For segmentation of images, there

are different approaches, supervised and unsupervised. Supervised techniques use

active contours [1, 2], fuzzy sets [3, 4] and machine learning algorithms like k-mean

clustering [5], morphological operations [6], etc. While, unsupervised techniques

come under deep learning. Deep learning uses neural networks [7, 8, 9]. Over the

couple of years neural networks have outperformed other approaches in this field.

2.3 Neural Network

Deep neural network or simply a neural network is a series of algorithms that

attempts to recognize underlying relationships in a set of data through a process

that imitates the way the human brain works. We can say, an artificial neural

network which via an algorithm allows computers to learn by incorporating new

data.
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Figure 2.5: A simple neural network. Here, the red circular objects represent
neurons in the hidden layers connected to the input via weights (connections)1.

In simple words, neural network refers to a system of neurons, artificial in

nature. There are different neural networks for different tasks, structure of a simple

neural network is shown in figure 2.5. Among them Convolutional neural networks

(CNNs) are used and considered best for segmentation task. Convolutional neural

networks (CNNs), shown in figure 2.6, are neural networks which are developed

by various layers of convolutional operations, pooling operations and activation

functions.

1https://www.massey.ac.nz/~wwpapajl/evolution/assign2/MVD/Indexpg.html

8

https://www.massey.ac.nz/~wwpapajl/evolution/assign2/MVD/Indexpg.html


Figure 2.6: A convolutional neural network for classification task2.

The working mechanism of a CNN can be represented in equations as: If x

represents an input, f represents activation function in a layer, W n represents a

kernel/filter, used to convolve over an image in a convolution operation, in an nth

layer, bn represents bias term added in the nth layer, zn represents an output of a

convolution operation with bias term in an nth layer, and an represents an output

of the f in an nth layer, then equations for n number of layers can be:

z1 = W 1x+ b1

a1 = f(z1)

a1 = f(W 1x+ b1)

2shorturl.at/IMN57
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z2 = W 2f(W 1x+ b1) + b2

a2 = f(W 2f(W 1x+ b1) + b2)

Similarly, third layer activation function output can be represented by:

a3 = f(W 3f(W 2f(W 1x+ b1) + b2) + b3)

Likewise, nth layer activation function output can be represented as:

an = f(W nf(W n−1 . . . f(W 1x+ b1) + . . .+ bn−1) + bn)

Convolutional neural network (CNN) based neural architectures are built up of

convolution operation, pooling operation, activation function, etc. Below are some

of the building blocks of CNNs.

2.3.1 Convolution

Convolution is a mathematical operation where we take a matrix, usually 3x3

square known as kernel/filter, and pass it over an image. Which in resultant trans-

forms the image into another image known as feature map. The feature map is

dependent on the elements/values of the filter. If an image I and kernel K are used

and the position of rows and columns of the feature map are denoted by m and n,

respectively, then the convolution operation of I and K can be represented as I ∗K
and the feature map G is given as:

G[m,n] = (I ∗K)[m,n] =
∑
i

∑
j

K(i, j)I[m− i, n− j].

After placing the kernel over a selected region of the image, each value from

the kernel is multiplied with the corresponding values in the region of the image.

After multiplication of each corresponding element, all the results are summed up

and put in the specified place of the feature map as shown in figure 2.7 below.

10



Figure 2.7: Convolution operation visualization3.

Different kernels do different jobs i.e. some are used for sharpening of images,

some are for blurring and some are used for edge detection.

2.3.2 Pooling

Pooling operations are used in convolutional neural networks to reduce size of

a feature map and speed up calculations. Besides this use, pooling operations

are used as regularizers to avoid overfitting. Unlike convolution operations, these

use window which pass over an image. There are basically two types of pooling

operations: Max pooling and Average pooling.

Max Pooling

In max pooling operation a window, usually 2x2, is used and pass over an image.

The greatest value of the feature map among the values is selected which come

under the window as shown in the figure 2.8 below.

3https://rb.gy/0wxnpb
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Figure 2.8: Max pooling operation visualization4.

Average Pooling

In average pooling, unlike the max pooling, average value of all the values which

come under the window is selected and placed in the new feature map as shown in

figure 2.9 below.

Figure 2.9: Average pooling operation visualization.

4http://cs231n.github.io/convolutional-networks/
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2.3.3 Activation Function

Convolutional neural networks use activation function to add non-linearities into

the network. Without this function neural networks would not be able to perform

complex tasks like pattern recognition, classification, segmentation etc. Rectified

Linear Unit (ReLU), Leaky ReLU, tangent hyperbolic (tanh) and sigmoid function

are the most used activation functions.

ReLU

Rectified Linear Unit (ReLU) is the most used activation function in neural net-

works. The function is defined as:

f(x) = max(0, x).

This function allows all non-negative values in a feature map for further opera-

tions; and all negative values are blocked and are assigned zero values as shown in

figure 2.10.

Figure 2.10: Graph of ReLU function.

Leaky ReLU

Sometimes, we come across dying ReLU problem, where all values in a feature map

are blocked by the ReLU function. This problem leads to vanishing gradient and

performance of neural networks is affected. To overcome this issue Leaky ReLU

13



is proposed as an activation function, which is a modified form of ReLU. Leaky

ReLU is defined as:

f(x) =

x, ifx > 0

ax, ifx < 0

Here, ’a’ works as a parameter. If we take a = 0.1, then Leaky ReLU graph

becomes, as shown in figure 2.11:

Figure 2.11: Graph of Leaky ReLU function.

This function passes all the values in a feature map to next level with adjusting

negative values towards 0 and leaving others as they are.

Tanh

Tangent hyperbolic (tanh) function f(x) = tanh(x) is also used as an activation

function in neural networks. This function allows all values in a feature map to

proceed further but by adjusting them between -1 and 1 as shown in figure 2.12.

14



Figure 2.12: Graph of tangent hyperbolic function.

Sigmoid

Sigmoid function is defined as:

f(x) =
1

1 + e−x

This function also allows all values in a feature for further operations but by

adjusting them between 0 and 1, as shown in figure 2.13.

Figure 2.13: Graph of sigmoid function.
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2.3.4 Batch Normalization

To avoid over-fitting and for acceleration of training process in neural networks

batch normalization layers are used. Batch normalization layer controls variation

in distribution by calculating mean and standard deviation values of the data set

as a whole by adjusting the mean to 0 and variance to 1, the equation for batch

normalization (BN) is given below as:

BN = γc

[
In,c,h,w − µc√

σ2
c − ε

]
+ βc.

Where, In,c,h,w represents n-number of images provided to a neural network at

a time with c channels, h heights and w widths. µc and σ2
c are channel wise global

mean and variance of the images, respectively. βc and γc are learnable mean and

standard deviation, respectively, while ε is kept constant as 0.00001.

16



Chapter 3

Literature Review

3.1 Background

Convolutional neural networks (CNNs) were being used long before 1990s [10], but

they were limited due to size of then available networks and training data. The first

breakthrough achieved by krizhevsky et al. [11] in 2012, named as AlexNet, using

training of large network consists of 18 layers and millions of parameters on the

imageNet data and 1 million of training images. After this a large and much deeper

networks have been trained [12]. Since 2010 deep convolutional networks have out-

performed the conventional state-of-the-art approaches towards visual recognition

tasks, like, [13] and [11]. At first CNNs were used for classification of images.

Ciresan et al. [14] presented a network for automatic segmentation of electron mi-

croscopy images. For the purpose the authors have used CNN as a pixel classifier.

A square window, centered at each pixel, is used for the prediction of the label of

each pixel. Each window pixel is mapped into a neuron, which is followed by con-

volution and max-pooling layers. The network has also won the ISBI 2012 electron

microscopy challenge by a huge margin.

3.1.1 U-Net Architecture

Ronneberger et al. [7] in 2015 proposed a state-of-the-art fast trained network

based on fully convolutional network. The work is known as U-Net due to its

architecture shape, a symmetric ’U’ shape, as shown in figure 3.1.

17



Figure 3.1: U-Net architecture.

The network consists of two paths: an encoding/contracting path and a decod-

ing/expanding path, which are on the left and right side of the model, respectively.

The encoding path captures context and a symmetric decoding path enables precise

localization. The network consists of total 23 layers of convolutions. Each layer

of 3x3 convolution in the contraction path is followed by a Rectified Linear Unit

(ReLU) and a 2x2 max pooling operator with stride 2 for down sampling; and at

each down-sampling the network makes the number of features doubled. While,

in the decoding path up-sampling, a 2x2 convolution, is used which is followed by

consecutive two 3x3 convolution layers, each layer is followed by a ReLU. At last,

a final layer of 1x1 convolution is used to get the desired number of classes from

each 64-component feature.

The authors of U-Net have applied the network in 2015 for segmentation task

on data sets provided by ISBI cell tracking challenge, the challenge began in 2012

and still available online. At first, they applied the network on PhC-U373 data set

which contains Glioblastoma-astrocytoma U373 cells. It obtained 92% of average

value of intersection over union (IOU), and on DICHeLa data set they achieved

an average 77.5% of IOU value. In both cases they got first position. Most of

the neural networks presented recent years for the task of segmentation of medical

images are based on the U-Net, which have outperformed other approaches for the

task.
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3.2 Related Work

Nowadays, most of the neural networks for medical images segmentation task are

extensions of the U-net [7] architecture; and they have outperformed other ap-

proaches in the field.

3.2.1 Pyramid Dilated Res-U-Net

An end to end network based on ResNet and U-net presented in [20], as shown in

figure 3.2. Each block of convolution in the encoder and decoder path of the U-net

are converted to residual blocks by adding inputs of each block to its output before

feeding the output to the next block of convolution.

Figure 3.2: Pyramid Dilated Res-U-Net.

The network replaces pooling layers with convolution layers for possible reduc-

tion of information loss. To increase expressiveness of their model the authors have

also introduced LeakyReLU instead of ReLU in the encoder path. The experimen-

tal results of the model have outperformed results of the basic U-net architecture.

3.2.2 RU-Net

Enhanced form of the U-net utilizing power of residual networks and recurrent

convolutional neural networks have been presented by Alom et al. [21], as shown

in figure 3.3 below.
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Figure 3.3: RU-Net architecture.

Residual units are selected as they are helpful in training deep neural archi-

tectures, where recurrent residual convolutional layers make sure better feature

extraction in segmentation tasks. The authors have trained the model for three

data sets, retinal images, skin cancer images and lung lesion segmentation achieving

better segmentation results than SegNet, U-net and residual U-net.

3.2.3 MultiResUNet

In 2019, a MultiResUNet [22] named as DC-UNet has been presented, as shown

in figure 3.4. In the architecture the authors have replaced convolutional blocks

with MultiRes blocks and unlike to the simple skip connections in the U-Net the

paper proposes Res paths. In the MultiRes block a residual connections between

consecutive convolutional layers is being introduced.

20



Figure 3.4: Architecture of MultiResUNet.

In addition, instead of equal number of filters the number of filters are also

increasing from 1 to 3. While in the Res path, unlike to the simple concatenation

from the encoder path to its corresponding decoder path, the feature maps are

passed through series of residual blocks before concatenation of the features with

the decoder features. The model is tested on five different data sets and has

outperformed the baseline U-Net architecture.

3.2.4 UNet++

Zhou et al. [23] have presented UNet++ based on the U-Net architecture. The

paper presents a densely connected skip path instead of simple skip connection

in the classical U-Net and utilizes deep supervision. The architecture is shown

in figure 3.5 below. The corresponding outputs of encoder and decoder paths are

concatenated using densely connected layers. Deep supervision enables the model

to work in two modes, a) accurate mode, and b) fast mode. In the accurate mode,

output of all the segmentation branches are averaged. While in the fast mode, the

best segmentation map is selected from one of the segmentation branches.
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Figure 3.5: UNet++: A Nested U-Net Architecture.

The enhanced skip pathway reduces gap between corresponding feature maps

of encoding and decoding path. The network is trained for segmentation of chest

CT scans, microscopy images’ nuclei, liver CT scans and for polyp segmentation

in colonoscopy videos.

3.2.5 LSTM Multi-modal U-Net

A network consists of multiple encoding paths is presented by Fan Xu et al. [15].

The network is named as LSTM Multi-modal U-Net, shown in figure 3.6. Basically

the network consists of two parts, multi modal u-net and convolutional LSTM.

Multi modal u-net utilizes densely connected layers between four different encoder

paths of the network for wholly exploitation of multi-modal data.
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Figure 3.6: LSTM Multi-modal U-Net Architecture.

The encoder path of the U-Net is replaced by four different encoder paths

according to modalities of brain tumor images used for the training process. They

have regarded image depths as a sequence of slices. Convolutional LSTM is used for

exploitation of sequential information between the consecutive slices of the images.

3.2.6 BCDU-Net

Another network utilizing BConvLSTM with densely connected layers (BCDU-

Net) has been presented by Reza Asad et al. in 2019 [8]. The network is an

extension of the U-net with utilization of power of densely connected convolutions

and bi-directional ConvLSTM. The paper proposes usage of n number of densely

connected convolutional layers in the bottleneck part of the classical U-net and

Long Short Term Memory Convolutional layers (LSTM) after the concatenation

process of corresponding output in the encoder and decoder path of the U-Net, as

shown in figure 3.7.
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Figure 3.7: BCDU-Net with bi-directional ConvLSTM in the skip connections and
densely connected convolution.

The network is tested for three data sets, retina images, skin images and lung

images with and without three densely connected layers. Results show that the

network with three densely connected layers has the best prediction.

3.2.7 DEFU-Net

A network, DEFU-Net [9], based on the U-Net presented recently for segmentation

of chest X-ray, shown in figure 3.8. The paper proposes a dual encoder fusion U-

net framework with densely connected recurrent convolutional neural network. The

densely connected recurrent path of the network helps the network for extraction of

feature in the images. Inception blocks with dilation are also used to increase width

of the network and to enrich the network representation of features. Features from

the densely connected recurrent path and the inception blocks are then summed

up for decoder path.
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Figure 3.8: DEFU-Net with Inception dilation Convolution Blocks and Densely
Connected Recurrent convolution (DCRC) Blocks.

The network is trained for chest X-ray data set achieving better performance

than the basic U-net, BCDU-Net, Residual U-Net and R2U-Net.

BUSU-Net [16], a recently presented network based on the U-Net. The network

is developed by combining two BCDU-Net with total of 108 layers, where one

BCDU-Net is deeper than the original BCDU-Net. The network is trained for

DRIVE data set, which contains retina images for blood vessel segmentation. The

network has outperformed state-of-the-art networks for the data set.

In this thesis, we propose a U-Net [7] based encoder-decoder neural network for

segmentation of skin lesion. The network, ResBCU-Net, utilizes power of residual

blocks [17], batch normalization [18] and BConvLSTM [19] network for the task.

In the network, we enhance the encoding path with residual blocks and batch

normalization, and the decoding path is enhanced by using BConvLSTM network

in the path. In addition, we also present a densely connected form of ResBCU-Net,

where we have made changes in the bottleneck section of our model like BCDU-Net

[8]. More details of our work are given in the next chapter, chapter 4.
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Chapter 4

ResBCU-Net: an Encoder and
Decoder Based Neural Network
for Segmentation of Skin Images

Based on U-Net [7] and inspired by Residual blocks [17], Batch normalization

[18] and Bi-directional Convolutional Long Short Term Memory (BConvLSTM)

network [19], we present a neural network, named as ResBCU-Net, shown in the

figure 4.1. We have made changes in the encoding path and decoding path of

the classical U-Net, so we have categorized details of our network into sections:

Encoding and Decoding.

4.1 Encoding

Unlike to the U-net [7], encoding/contracting path of ResBCU-Net consists of

residual blocks [17] and batch normalization layers [18] with nine convolution layers.

The path consists of three blocks, each block contains three convolution layers

followed by a batch normalization layer. The output of first convolution layer in

each block is added with the output of the batch normalization layer, which is then

followed by a max pooling layer. At the same time, before the max pooling layer,

the output of each block is passed for concatenation with the corresponding output

of the decoding/expanding path.
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Figure 4.1: ResBCU-Net architecture with residual blocks in the encoding path
and BConvLSTM in the decoding path. The numbers on top of the rectangles
show number of channels.

4.1.1 Residual Blocks

Successive sequences of convolution layers lead to learning of different features, in

some cases it may also lead to learning of redundant features; and adding more

layers leads to higher training error. To solve this problem in such deeper models

residual blocks are introduced in [17]. An input to some convolution layers is

added to the output of the layers, the resultant is again feeded to the successive

convolution layers, example of residual block is shown in the figure. 4.2 below.

Figure 4.2: ResNet residual block. Figure 4.3: ResBCU-Net residual block.
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We utilize this approach for ResBCU-Net encoding path. Instead of blocks of

two convolution layers in the encoding path we introduce three convolutions blocks

each followed by a batch normalization layer. Each block is then converted to

residual blocks by adding output of the first convolution layer to the output of the

batch normalization layer in the block, as shown in the figure. 4.3 above.

4.1.2 Batch Normalization

To avoid over-fitting and for acceleration of the training process we include batch

normalization layers [18] in the encoding and decoding path of ResBCU-Net. The

batch normalization layer controls variation in distribution by calculating mean

and standard deviation values of the data set as a whole by adjusting the mean to

0 and variance to 1, the equation for batch normalization (BN) is given below as:

BN = γc

[
In,c,h,w − µc√

σ2
c − ε

]
+ βc.

Where, In,c,h,w represents n-number of images provided to a neural network at

a time with c channels, h heights and w widths. µc and σ2
c are channel wise global

mean and variance of the images, respectively. βc and γc are learnable mean and

standard deviation, respectively, while ε is kept constant as 0.00001.

We introduce BN layers in each block of the encoding and decoding path. In

the encoding path BN layers are used at the end of each block just before max-

pooling layer. After max pooling layer of the third block of convolution layers

bottleneck section of the network starts, where we use only two convolution layers

each followed by an activation function, ReLU. While in the decoding path, we use

batch normalization layers after each up-sampling layer, which are then followed

by activation functions, ReLU, before proceeding to the next block.

4.2 Decoding

The decoding/expanding path of ResBCU-Net, inspired by BCDU-Net [8], contains

convolution layers, up sampling layers, batch normalization layers [18] and Bi-

directional LSTM convolutions (BConvLSTM) [19]. Right after the bottleneck

portion of the network an up sampling convolution with 2x2 filter, followed by a

batch normalization layer, is used which is then followed by two convolution layers

block. Features from the corresponding blocks in the encoding path are passed into

the BConvLSTM after concatenation with the outputs of the corresponding block

of the decoding path. In each block, outputs of BConvLSTMs are passed into two
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convolutional layers. At the end of the decoding path, we use a convolution layer

with 1x1 filter followed by a sigmoid function as an activation function.

4.2.1 BConvLSTM

In the decoding path, we take advantage of convolutional long short term memory

(ConvLSTM) networks for ResBCU-Net inspired by [24, 8]. We use ConvLSTM to

process features into two directions: forward and backward, known as BConvLSTM

[19]. BConvLSTM have been implemented successively to enhance performance of

neural networks [25, 8]. LSTMs are enhanced version of recurrent neural networks

(RNNs) [26, 27, 28], which have been developed to overcome the gradient vanishing

issue in long dependence of neural networks in training.

Figure 4.4: A single block of ConvLSTM network1.

A single block of ConvLSTM consists of input gate, it, forget gate, ft, and

output gate, Ot. Here, χ1, χ2, ..., χt are inputs, C1, C2, ..., Ct are cell state outputs

and h1, h2, ..., ht represent hidden states. In the above figure 4.4, × and + represent

point wise multiplication and addition, respectively. Yellow colour blocks represent

neural network layers followed by activation functions.

The above given LSTM network is a basic and simple LSTM network. We use

variant of this network proposed by Gers & Schmidhuber (2000) [29]. The author

1http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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have introduced peephole connections between the cell state and the gates, the

figure is given below .

Figure 4.5: A modified ConvLSTM network2. Peepholes can be seen connecting
the cell state with the mentioned three gates.

In the figure 4.5 above, the cell state keeps the information after all the processes

inside the LSTM network which are then proceed for further operations through

the hidden state. At first, the forget gate, ft, decides which information has to be

blocked from moving into the cell state, which is represented by equation 4.1 below.

Where, ∗ and o are convolution operator and Hadamard product, respectively.

ft = σ(ωxf ∗ χt + ωhf ∗ ht−1 + ωcfoCt−1 + bf ) (4.1)

The second phase is to letting of information to the cell state which is done

by the input gate, it. The output of the input gate is represented by equation 4.2

below.

it = σ(ωxi ∗ χt + ωhi ∗ ht−1 + ωcioCt−1 + bi) (4.2)
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The next phase is to update the cell state from Ct−1 to Ct. For that, we first

take Hadamard product of the old state with the output of the forget gate and also

take Hadamard product of the output of the input gate and the activation function

tanh. The whole process is represented by equation 4.3 below.

Ct = ftoCt−1 + itotanh(ωxc ∗ χt + ωhc ∗ ht−1 + bc) (4.3)

Finally, the output of the network is gained using the new cell state in the

output gate. The process is represented by equation 4.4.

Ot = σ(ωxo ∗ χt + ωho ∗ ht−1 + ωcooCt + bo) (4.4)

The hidden state is then obtained by convolution of the output with the tanh(Ct).

The final output of a single LSTM network is represented by the equation given

below.

ht = Ototanh(Ct)

The ht is the hidden state, output, of the single ConvLSTM block. Now, in

case of bi-directional ConvLSTM (BConvLSTM) the output can be represented as:

Yt = tanh(ω
−→
h
y ∗
−→
h t + ω

←−
h
y ∗
←−
h t + b).

Here,
−→
h t and

←−
h t are output states of forward and backward directions features

process; and the Yt is the final output of a BConvLSTM block.

The copied features from encoding path are concatenated with corresponding

outputs from decoding path and are then passed into BConvLSTM blocks. The

output of these blocks are then proceed forward to the two convolution layers

blocks.

4.3 Training and Results

We train ResBCU-Net in Google Colab [30] for ISIC 2018 challenge dataset [31],

which contains 2594 skin images containing lesions. The data set was published by

International Skin Imaging Collaboration (ISIC) for a challenge on lesion segmen-

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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tation, disease classification and dermoscopic feature detection. We distribute the

data set as: 2300 images for training, 200 images for validation and 94 for testing.

The images are of different sizes and are of high resolutions. To fit into the GPU

we resize the images to 128x128 size of images. We utilize Keras with TensorFlow

backened [32] for the implementation of our work; and take help from the strategy

used by [8] for training our network.

(a) (b) (c)

Figure 4.6: Visualization of segmentation results of ResBCU-Net. (a): Image, (b):
Image mask, (c): Our network prediction

We train ResBCU-Net for 100 epochs with batch size 8. We choose 10−3 as

starting learning rate and let the learning rate reduce to 10−4 by using Callback,

ReduceLROnPlateau, in case of unimprovement of validation loss for seven epochs,

segmentation results of ResBCU-Net are given in figure 4.6. During the training

process visualization of losses and accuracies of training and validation data is given

in the figures 4.7. The figures below show that the network was quite unstable at

the start of training, this is because of the great variation between the images in

the data set and random selection of the images for the training and validation.
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Figure 4.7: Training visualization of ResBCU-Net.

Neural networks need big data for training, in our case our data set contains

only 2594 images which are not enough for training a neural network. Lack of data

set causes overfitting; and initially we experienced it as expected. One option was

to augment the data set and use the augmented data for training, which was not

possible for us, as it requires high speed and high memory GPUs. The other option

is to regularize the network. We go with the second option to avoid the overfitting,

so we add 5% gaussian noise to the input images and use drop out layers in the

third block and in the bottleneck of the network.

We also train the model with Densely connected layers in the bottleneck of

our model just like BCDU-Net (d=3) [8] with and without batch normalization

(BN) layers. Adding densely connected layers in the bottle increase the depth of

the model which ultimately leads to overfitting with the same data set. Overfitting

can be seen in the training visualization given in figure 4.8. The model with densely

connected and BN layers shows little overfitting as compare to the model without
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BN, shown in figure 4.9.

Figure 4.8: ResBCU-Net(d=3) training visualization with batch normalization lay-
ers.

In addition, we find that the model with densely connected and BN layers has

more accurate results than the one without BN layers; and there is a huge difference

between the training time, as the model without BN layers takes 143 seconds for

an epoch while the model with BN layers only takes 51 seconds for one epoch.
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Figure 4.9: ResBCU(d=3) training visualization without batch normalization lay-
ers.

Comparative analysis gives us the significant of BN layers in accuracy, overfit-

ting and speed up of neural networks. The model with no densely connected layers

can be seen very well fit trained, shown in figure 4.7. The reason is that densely

connected layers increase the depth of the network which leads to huge difference

between the size of the network and size of the data set.

For quantitative analysis of results we use several metrics like, Jaccard Similarity

Index (JS), specificity (SP), F1-score, and Sensitivity. Comparison, shown in the

table 4.1, with other state-of-the-art networks shows that our network achieves the

best results, so far, for the data set.
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Table 4.1: Comparison of ResBCU-Net results with other state-of-the-art alterna-
tives.

Models F1-score Sensitivity Specificity JS
U-Net 0.647 0.708 0.964 0.549

R2U-Net[33] 0.679 0.792 0.928 0.581
BCDU-Net(d=1) 0.847 0.783 0.980 0.936
BCDU-Net(d=3) 0.859 0.785 0.982 0.937

ResBCU-Net(d=3) 0.864 0.795 0.987 0.945
ResBCU-Net 0.845 0.789 0.980 0.940

BCDU-Net(d=3) and BCDU-Net(d=1) are networks presented by BCDU-Net

[8] with dense layers and without dense layers, respectively. While, ResBCU-

Net(d=3) is enhanced form of ResBCU-Net, which utilizes 3 densely connected

convolutional layers in bottleneck section, as in BCDU-Net(d=3). The table shows

that our network has achieved better performance as compared to the state-of-

the-art neural networks. F1-score and specificity of BCDU-Net(d=3) are slightly

higher than ResBCU-Net. If we look into number of parameters ResBCU-Net has

9.6 million parameters while BCDU-Net(d=3) has 20.6 million, which shows our

network has less than 50% parameters than the parameters of BCDU-Net(d=3).
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Chapter 5

Conclusion

In the work, we proposed an encoder-decoder neural network, named as ResBCU-

Net, for segmentation of skin images containing lesions, which utilizes power of

residual blocks, batch normalization and BConvLSTM network. We trained and

evaluated the network on publicly available ISIC 2018 challenge dataset. The

network results showed higher accuracy for our network than other state-of-the-

art networks for the task. We also extended the network by utilizing densely

convolutional connected layers in the bottleneck section; where we got much better

results with some small amount of overfitting. We urge that if big size of data set

is provided to ResBCU-Net then performance of the network will be much more

better. In future, we intend to train the network for large data set or augmenting

the available data set. Moreover, we want to extend our work for segmentation of

brain tumor, retinal images using DRIVE data set, and chest X-rays of Covid-19

patients.
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