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Characterisation of Hilbert spaces

In the following we will show that all Hilbert spaces are isomorphic to a space
of square integrable functions which we can use later as we then can always
work in those nice and explicit spaces. Further we will also obtain a generalised
Fourier series in Hilbert spaces. In this section it will be usefull to use some
uncountable sums if at most countably many summands are non zero. More
precisely we will write

x =
∑
i∈I

xi

if J := {i ∈ I | xi 6= 0} is countable and for every numeration (jn) of J we have

x =
∑
n∈N

xjn := lim
N→∞

N∑
n=1

xjn .

1 Definition (Orthonormal set). A subset {ei}i∈I of a Hilbert space H is
called orthonormal set, or short ONS, if we have 〈ei, ej〉 = δij . Further it is
called complete, or short CONS, if the linear span is dense in H.

2 Remark. The concept of complete orthonormal sets takes the role of the
classical orthonormal basis in the case of infinite dimensional Hilbert spaces as
there is never an orthonormal basis in this case. To see that, let {ei}i∈I be an
infinite orthonormal set. Then we can take a sequence (ein)n∈N with in 6= im
for n 6= m and now the element

∑
n

1
nein ∈ H can not be expressed as a finite

linear combination of elements from the orthonormal set. Thus an orthonormal
set can never be a basis in infinite dimensions.

3 Proposition (Existence of CONS). Every Hilbert space has a complete or-
thonormal set.

To prove this fundamental statement we will need two auxiliary results.

4 Proposition (Bessels inequality). Let {en}n∈N be an orthonormal set and let
x ∈ H. Then we have ∑

n∈N
|〈x, en〉|2 ≤ ‖x‖2 .
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Proof. For N ∈ N we set xN :=
N∑

n=1
〈x, en〉 en. Using Pythagoras theorem and

xN ⊥ x− xN we get

‖x‖2 = ‖x− xN‖2 + ‖xN‖2 ≥ ‖xN‖2 =

N∑
n=1

|〈x, en〉|2 .

As this holds for all N we can pass to the limit.

5 Corollary. Let {ei}i∈I be an orthonormal set. Then the set

Jx :=
{
i ∈ I | 〈x, ei〉 6= 0

}
is at most countable for all x ∈ H.

Proof. With the usage of Bessels inequality we immediately get that{
i ∈ I

∣∣∣ |〈x, ei〉| ≥ 1

n

}
is finite for all n ∈ N which yields the assertion.

Proof of proposition 3. Zorns Lemma yields the existence of a wrt inclusion
maximal orthonormal set {ei}i∈I . If the linear span of the orthonormal set
would not be dense, then we claim the existence of a nontrivial, normed element
e in the orthogonal complement and therefore the set would not be maximal as
we could add e to it. Thus {ei}i∈I has to be a complete orthonormal set. To
complete the proof we only have to show the existence such an element e. To
do so, set U := span {ei}i∈I and choose x /∈ U . Further define Jx as above and
take a numeration (jn) of Jx. Then we get using Bessels inequality that

e := x−
∑
n∈N
〈x, ejn〉 ejn ∈ H

exists. The element e is non trivial as e = 0 would imply

x =
∑
n∈N
〈x, ejn〉 ejn ∈ U

which is a contradiction. Thus we can wlog assume e to be normed and further
we have 〈e, ej〉 = 0 for all j ∈ Jx and 〈e, ei〉 = 0 for all i ∈ I \ Jx an therefore
we can conclude e ∈ U⊥.

6 Lemma. Let I be an arbitrary set and let L2(I) be the Hilbert space induced
by the counting measure #. Further χi denotes the characteristic function of
{i}. Then {χi}i∈I is a complete orthonormal set and we have

v =
∑
i∈I

v(i)χi (1)

in which for a fixed v at most countably many summands are non zero.
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Proof. It is obvious that {χi}i∈I is an orthonormal set, and if we can prove (1)
the completeness follows. A function v ∈ L2(I) vanishes outside of a countable
set, because if {|v| ≥ ε} ⊆ I would be infinite for some ε > 0, v would not be
square integrable wrt the counting measure. For a fixed v let J := {v 6= 0} =
{in}n∈N, then we have∥∥∥∥∥v −

N∑
n=1

v(in)χin

∥∥∥∥∥
2

L2(I)

=

∫
χJ\{i1,...,iN} |v|

2
d#

N→∞−−−−→ 0

by dominated convergence, which shows the assertion.

7 Theorem (Characterisation of Hilbert spaces and Fourier series). Let H be
a Hilbert space and let {ei}i∈I ⊆ H be a complete orthonormal set. Then there
is an isometric isomorphism Φ: L2(I) → H such that χi 7→ ei. Further the
inverse is given by v̂(i) :=

(
Φ−1v)(i) = 〈v, ei〉 and we have

v =
∑
i∈I
〈v, ei〉 ei (2)

and for a fixed v at most countably many summands are non zero. Moreover
the scalar product can be calculated by

〈v, w〉 =
∑
i∈I
〈v, ei〉 〈w, ei〉 (3)

and in particular

‖v‖2 =
∑
i∈I
|〈v, ei〉|2 .

Proof. First we convince ourselves that χi 7→ ei defines a linear isometry from
the span of {χi}i∈I onto its range which can uniquely be extended to an isometry
Φ defined on the whole space L2(I). In particular the range is closed in H but
further it is also dense, as the span of {ei}i∈I is contained in the range. Therefore
Φ is an isometric isomorphism from L2(I) onto H and thus unitary by using
the polarisation identity. This yields

〈v, ei〉 =
〈
Φ−1v,Φ−1ei

〉
= 〈v̂, χi〉 = v̂(i).

By applying the previous lemma we get

v = Φ(v̂) = Φ

(∑
i∈I

v̂(i)χi

)
=
∑
i∈I

v̂(i)Φχi =
∑
i∈I
〈v, ei〉 ei

where we used the continuity of Φ to swap it with the countable sum. Finally
we have

〈v, w〉 = 〈v̂, ŵ〉 =
∑
i∈I

v̂(i)ŵ(i) =
∑
i∈I
〈v, ei〉 〈w, ei〉.

8 Remark. The formula (4) is a direct generalisation of the Fourier expansion
in abstract Hilbert spaces. To obtain the classical Fourier expansion one only

has to prove that
{

(2π)−
1
2 einx

}
n∈Z

is a complete orthonormal set in L2([0, 2π]).
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9 Proposition. For a Hilbert space H the following statements are equivalent.

(i) H is separable.

(ii) There is an at most countable complete orthonormal set {en} of H.

(iii) Every orthonormal set in H is at most countable.

Proof. (iii) ⇒ (ii) is obvious because every Hilbert space has a complete or-
thonormal set.

(ii) ⇒ (i) is also straight forward as the linear combinations of {en} with
rational coefficients are countable and dense in H.

(i)⇒ (iii): If there would be an uncountable orthonormal set, then it would
be an uncountable discrete set in H and therefore H could not be separable.

10 Corollary. Every separable Hilbert space is isometrically isomorphic to the
space of square summable sequences l2(K) ∼= L2(N).

Proof. Combine Theorem 7 and Proposition 9.

Orthogonal projection and sesquilinear forms

In this section we will investigate some further properties of the structures of
Hilbert spaces. First we will prove that for a closed subspace of a Hilbert space
we can find an orthogonal projection in analogy to the finite dimensional case.
Then we will show that the dual space of a Hilbert space is isometric to the
Hilbert space itself and will characterise all continuous sesquilinear forms.

11 Theorem (Orthogonal projection). Let U ⊆ H be a closed subspace of a
Hilbert space H. Then there exists a linear contraction P : H → U such that
x− Px ∈ U⊥ and further the mapping

H → U × U⊥, x 7→ (Px, x− Px)

is a linear isometric isomorphism. In other words, H is the isometric direct
sum of the two closed subspaces U and U⊥, i.e. every element x ∈ H can be
uniquely written as the sum u+ v with u ∈ U, v ∈ U⊥ and ‖x‖2 = ‖u‖2 + ‖v‖2.

Proof. We will only show the existence of the mapping P as the other assertions
then follow immediatly.

Let {ej}j∈J ⊆ U be a complete orthonormal set in U . Then there is an

complete orthonormal set {ei}i∈I ⊆ H with J ⊆ I. Set now

Px :=
∑
j∈J
〈x, ej〉 ej for x ∈ H.

This sum is well defined, as we have (〈x, ej〉)j∈J ∈ L2(J) and as U is closed we
get Px ∈ U . With

x− Px =
∑

i∈I\J

〈x, ei〉 ei

and (3) we get x− Px ∈ U⊥.
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12 Remark. With the above notation we get

〈x, u〉 = 〈x− Px, u〉+ 〈Px, u〉 = 〈Px, u〉 for all x ∈ X,u ∈ U

which is sometimes used to define the term projection.

13 Example (Conditional expectation as a projection). We consider a prob-
ability space (Ω,F ,P), that is a measurable space with a normed measure, i.e.
P(Ω) = 1. Let G ⊆ F be a sub σ field, then L2(G) is complete and therefore a
closed subspace of L2(F). Let P be the projection onto L2(G), then we get

〈f, g〉L2(F) = 〈Pf, g〉L2(F) for all g ∈ L2(G).

In particular we have for all A ∈ G∫
f · χAdP =

∫
Pf · χAdP (4)

which is the just the definition of the conditional expectation of f wrt to G. In
stochastics P is written as E[·|G] and can be extended to a linear contraction
from L1(F) to L1(G). Indeed we have for f ∈ L2(F)

‖Pf‖L1(G) = 〈Pf, sign(Pf)〉L2(F) = 〈f, sign(Pf)〉L2(F) ≤ ‖f‖L1(F)

and since L2(F) ⊆ L1(F) is dense the assertion follows and (4) extends for all
f ∈ L1(F).

14 Theorem (Riesz representation theorem). Let H be a Hilbert space and
f ∈ H ′. Then there is a unique element xf ∈ H such that f(y) = 〈y, xf 〉 for all
y ∈ H. Further the mapping

ΦH : H ′ → H, f 7→ xf

is bijective, isometric and conjugate linear, i.e. ΦH(λf) = λΦHf for all f ∈ H ′
and λ ∈ K.

Proof. Assume wlog that f 6= 0, then we find a non trivial element x̂ ∈ ker(f)⊥

such that f(x̂) = 1 as ker(f) is a closed but strict subspace. For y ∈ H we have
y − f(y)x̂ ∈ ker(f) and therefore〈

y − f(y)x̂, x̂
〉

= 0.

This implies 〈y, x̂〉 = f(y) ‖x̂‖2 and therefore xf := x̂
‖x̂‖2 fulfills the assertion.

The conjugate linearity follows directly from the conjugate linearity of the
second component of the scalar product. Further the isometry property follows
from

‖f‖ = sup
‖y‖=1

|f(y)| = sup
‖y‖=1

|〈y, xf 〉| = ‖xf‖ .

This computation also shows that 〈·, x〉 ∈ H ′ for all x ∈ H which directly implies
the bijectivity as this is simply the inverse mapping.

15 Corollary (Adjoint mapping). Let H1, H2 be Hilbert spaces and A ∈ L(H1, H2).
Then there is a unique mapping A∗ ∈ L(H2, H1), called the adjoint mapping of
A, such that

〈Ax, y〉H2
= 〈x,A∗y〉H1

for all x ∈ H1, y ∈ H2.
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Proof. SetA∗ := ΦH1
A′Φ−1H2

and calculate the stated properties. The uniqueness
is obvious, because A∗y is uniquely determined by the values 〈x,A∗y〉.

16 Definition (Bounded sesquilinear forms). Let X,Y be normed spaces and
B : X × Y → K be a sesquilinear form. Then we call B bounded if

‖B‖ := sup
‖x‖X≤1,‖y‖Y ≤1

|B(x, y)| <∞

holds.

17 Proposition (Sesquilienar forms). Let X,Y be normed spaces and let B be
a bounded sesquilinear form on X × Y . Then there is a unique conjugate linear
bounded mapping A = AB : Y → X ′ such that(

Ay
)
(x) = B(x, y) for all x ∈ X, y ∈ Y. (5)

Further we have ‖A‖ = ‖B‖ and thus there is an isometric bijection{
B | B sesquilinear form on X × Y

}
→ L(Y,X ′), B 7→ AB .

Proof. The operator AB has to satisfy (5), so we can simply define it via (5).
The computation

sup
‖x‖≤1

(
Ay
)
(x) = sup

‖x‖≤1
B(x, y) ≤ ‖B‖ ‖y‖

shows that Ay indeed is a dual element. The conjugate linearity of AB follows
from the conjugate linearity of the second component of B and the isometry
property with

‖AB‖ = sup
‖y‖≤1

sup
‖x‖≤1

∣∣(Ay)(x)
∣∣ = sup

‖y‖≤1
sup
‖x‖≤1

|B(x, y)| = ‖B‖ .

Finally the bijectivity of B 7→ AB follows as the inverse is given by

A 7→
(

(x, y) 7→
(
Ay
)
(x)
)
.

18 Theorem (Characterisation of Sesquilinear forms). Let B be a bounded
sesquilinear form on the Hilbert space H. Then there is a unique mapping
A = AB ∈ L(H) such that

B(x, y) = 〈x,Ay〉 for all x ∈ H (6)

Hence there is a canonical isometric bijection{
B | B sesquilinear form on H

}
→ L(H), B 7→ AB .

Further A is self adjoint if and only if B(x, y) = B(y, x) for all x, y ∈ H.
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Proof. The first part of the assertion follows directly from the previous proposi-
tion, if we take the pointwise composition of the conjugate linear mapping AB

with the Riesz isometry ΦH . Finally A is selfadjoint if and only if we have

B(x, y) = 〈x,Ay〉 = 〈Ax, y〉 = 〈y,Ax〉 = B(y, x) for all x, y ∈ H.

Now we want to give a sufficient condition for B such that the induced
operator AB is an isomorphism.

19 Definition (Coercivity). A sesquilinear form B on a Banach space X is
called coercive if we have

bBc := inf
‖x‖X=1

Re
(
B(x, x)

)
> 0.

20 Corollary (Lax-Milgram). Let B be a coercive sesquilinear form on the
Hilbert space H.Then the operator A = AB fulfilling

B(x, y) = 〈x,Ay〉 for all x ∈ H

is an isomorphism with
∥∥A−1∥∥ ≤ bBc−1.

Proof. Obviously the coercivity of B implies the injectivity of A. To see that
the range of A is closed, take Axn → y, then we have

‖xn − xm‖2 ≤ bBc |B(xn − xm, xn − xm)| ≤ bBc ‖Axn −Axm‖ ‖xn − xm‖
(7)

and therefore (xn) is a Cauchy sequence with limit x. Now we have y = Ax as
A is continuous and therefore the range of A is closed. If the range would not
be dense, we would find an element x ∈ ran(A)⊥ which would fulfill

〈x,Ax〉 = B(x, x) = 0

which is absurd. Thus the range is dense and with the closedness we have
ran(A) = X. Finally (7) also shows the boundedness of the inverse mapping as
well as

∥∥A−1∥∥ ≤ bBc−1.
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