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The famous Picard-Lindelöf theorem yields local well posedness of ODEs in Banach
spaces under the presence of a Lipschitz condition. However, we will see that this result
does not generalise to the more setting of Frechét spaces which might be surprising at
first since the core of the proof – the Banach fixed point theorem – is a result for metric
spaces not normed ones. Hence, we will investigate which step in the proof fails and
will see that the proof breaks done solely because the Bochner inequality or triangle
inequality for step functions does not hold anymore. This also shows that the integration
theory due to Lebesgue and Bochner does not generalise to Frechét spaces in a straight
forward way.

We begin by stating the well known local well posedness result for ODEs which we do for Banach
spaces as we will see that the proof is as easy as in the Euclidean case.

� T������ (P�����-L�������). Let X be a Banach space and let t0 2 .a; b/ ✓ R; x0 2 X be initial
values. Let further

F W Œa; bç ⇥ Bı.x0/ ! X

satisfy the following Lipschitz condition

kF.t; x/ � F.t; y/k  L kx � yk for all t 2 Œa; bç; x; y 2 Bı.x0/ (1)

as well as
kF.t; x/k  K < 1 for all t 2 Œa; bç; x 2 Bı.x0/: (2)

Then there exists " > 0 such that there is a unique solution x W Œt0 � "; t0 C "ç ! X of the ordinary
di�erential equation

@t x.t/ D F.t; x.t// and x.t0/ D x0:

We will now discuss an example that shows that the previous result does not hold if we consider a
Frechét space X instead of a Banach space.

� E������ (N�� ��������� �� F������ ������). Let X D C.R/ be the space of continuous real
functions endowed with the topology of locally uniform convergence induced by the Frechét metric

d.f; g/ WD
X
n2N

2�n
kf � gk1;n

1 C kf � gk1;n

; where kf k1;n WD sup
x2Œ�n;nç

jf .x/j :

We consider the initial value problem

@t x.t/ D x.t/2 and x.0/ D idR : (3)

It is elemetary to show that the right hand side F.t; f / D f 2 is Lipschitz continuous with constant L  2

and relies only on x2

1Cx2  2 � x
1Cx . Further the mapping F is bounded, since the metric is globally

bounded.
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We will assume that there is a local solution to the ODE (3), i.e. that there is " > 0 and a curve

x W Œ�"; "ç ! C.R/

that satisfies (3). Since the Dirac delta distributions ıy , i.e. the evaluations in a point y 2 R are linear
bounded functionals on C.R/, they map solutions of ODEs to solutions of transformed ODEs. In our case
this means that the solution x is also a pointwise solutions, i.e. that

@t x.t/.y/ D x.t/.y/2 and x.0/.y/ D y:

Hence by the theory for real valued ODEs we have

x.t/.y/ D y

1 � ty

given ty < 1 and hence for no t ¤ 0 one obtains a function defined on whole R.

In order to investigate which part of the proof fails in the case of Frechét spaces, we recall how the proof
works in the Banach space setting.

Proof of Picard-Lindelöf. Let wlog t0 D 0 and choose ˛ 2 .0; 1/ as well as " WD min
n

˛
L ; ı

K

o
. Note that

by the fundamental theorem of calculus x W Œ�"; "ç ! X is a solution of the ODE if and only if it satisfies

x.t/ D x0 C
tˆ

0

F.s; x.s//ds WD T x.t/ for all t 2 Œ�"; "ç:

Hence we have transformed the ODE into a fixed point problem which we consider on

M D
n
g W Œ�"; "ç ! Bı.x0/

ˇ̌
g continuous

o

which is a the complete metric space endowed with the topology of uniform convergence. It remains to
check that T is a self mapping ˛-contraction.

(i) Self mappging: We have for all t 2 Œ0; "ç (and analogously for t 2 Œ�"; 0ç)

kT x.t/ � x0k 
tˆ

0

kF.s; x.s//k ds  "K  ı:

(ii) ˛-contraction: We compute for arbitrary t 2 Œ0; "ç

kT x.t/ � Ty.t/k 
tˆ

0

kF.s; x.s// � F.s; y.s//k ds  "L kx � yk  ˛ kx � yk

and similarly for t 2 Œ�"; 0ç.

Now the Banach Fixed point theorem yields the existence of a unique solution.

W��� ���� ����� �� F������ ������
The proof of the Picard-Lindelöf theorem relies on four steps:

(i) Reformulation as a fixed point problem.

(ii) Completeness of the space of continuous functions M .
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(iii) Self mapping property of T .

(iv) ˛-contraction property of T .

First we note that the first two steps also work in Frechét spaces.

� R������ ����������� �� F������ ������. The whole theory of Riemann integration does not only
generalise from the Euclidean case to Banach spaces but directly without big adjustments to the case of
Frechét spaces. Namely for the reformulation of the ODE one needs the following properties:

(i) Riemann integrability of continuous curves.

(ii) Fundamental theorem of calculus: For a continuously di�erentiable curve F with f D F 0 we have

bˆ
a

f .t/dt D F.b/ � F.a/:

On the other hand if f is a continuous curve, then

F.t/ WD
tˆ

t0

f .t/dt

is continuously di�erentiable with F 0 D f .

The proofs for those are either analogue to the real valued case or can easily be deduced from the real
valued case by testing with bounded linear functionals.

� C����������� �� ����� �� ���������� ���������. Just like in the normed case one can show
that for a metric space X and a complete metric space Y the space of all bounded continuous mappings
Cb.X; Y / is a complete metric space with the uniform metric

d.f; g/ WD sup
x2X

d.f .x/; g.x//:

A mapping into a metric space is called bounded if

sup
x1;x22X

d.f .x1/; f .x2// < 1:

Since Bı.x0/ is a complete metric space this argument shows that

M D
n
g W Œ�"; "ç ! Bı.x0/

ˇ̌
g continuous

o

is a complete metric space. Thus the Banach fixed point theorem would be applicable if the mapping T
was a self mapping that is an ˛-contraction.

� B������ ����������. With the considerations so far, we know that one of the remaining parts, if
not both have to fail. The only thing that is necessary for the proof of the self mapping as well as the
contraction property is the triangle inequality for integrals

����
ˆ

f .s/ds

���� 
ˆ

kf .s/k ds

which is also called Bochner inequality. Thus this equality has to be missing in the metric case and indeed
it can be seen in the proof of it where we use the scaling property that distinguishes a norm from a mapping.
Indeed, for any step function f D Pn

iD1.ti � ti�1/xi we have

����
ˆ

f .s/ds

���� D

������
nX

iD1

.ti � ti�1/xi

������ 
nX

iD1

k.ti � ti�1/xi k D
nX

iD1

.ti � ti�1/ kxi k D
ˆ

kf .s/k ds:
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However, in the case of metric spaces we have

d
�
.ti � ti�1/xi ; 0

�
¤ .ti � ti�1/d.xi ; 0/

and hence the proof fails for simple functions. Indeed the triangle inequality would imply

d.˛x; 0/ D d

0
B@

˛̂

0

xds; 0

1
CA 

˛̂

0

d.x; 0/ds D ˛d.x; 0/ for ˛ � 0; x 2 X:

However this sublinear scaling property implies for ˛ > 0

d.˛x; 0/  ˛d.x; 0/ D ˛d.˛�1˛x; 0/  ˛˛�1d.˛x; 0/ D d.˛x; 0/

and thus x 7! d.x; 0/ would already be a norm.
In summary we have seen that the Bochner inequality

d

✓ˆ
f .s/ds;

ˆ
g.s/ds

◆

ˆ

d.f .s/; g.s//ds

is equivalent to the statement that x 7! d.x; 0/ is a norm, i.e. that the Frechét space is indeed a Banach
space.

� R����� (B������ �����������). In a nutshell the generalisation of Lebesgue integration to Ba-
nach space valued functions f W ˝ ! X with respect to a finite measure � relies on the following steps:

(i) Consider the space of all absolutely integrable functions

L1.�I X/ D

8̂
<
:̂f W ˝ ! X

ˇ̌
ˇ
ˆ

˝

kf k d� < 1

9>=
>;

with the norm
f 7!

ˆ

˝

kf k d�:

(ii) Note that the subspace of simple functions

E D

8<
:

nX
iD1

�Ai
xi

ˇ̌
n 2 N; xi 2 X; Ai ✓ ˝ measurable

9=
; :

(iii) Declare the integral I on the simple functions the familiar way and show the Bochner inequality for
simple functions

kIf k D

������
nX

iD1

�Ai
xi

������ 
nX

iD1

�Ai
kxi k D kf kL1.�IX/ :

This shows that the integral is a linear contraction from L1.�I X/ to X and can therefore be uniquely
extended.

Since we have seen that the Bochner inequality – which lies at the heart of the Bochner integration theory
– is characteristic for normed spaces we note that this approach is fordoomed to fail in the case of Frechét
spaces.
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