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Partially observable Markov decision processes (POMDPs)
� A POMDP is a tupel (S, O, A, α, β, r) and a MDP is a tupel (S, A, α, r), where:
� State, oberservation, action spaces. Finite sets S, O and A.

� Observation mechanism. Markov kernel β ∈ ∆S
O from S to O.

� Action mechanism. Markov kernel α ∈ ∆S×A
S from S × A to S.

� Policies and effective policies. Markov kernelsπ ∈ ∆O
A fromO toA; every policyπ ∈ ∆O

A
induces an effective policy τ = π ◦ β ∈ ∆S

A from S to A.

� Effective policy polytope. The polytope∆S,β
A := {π ◦ β | π ∈ ∆O

A} ⊆ ∆S
A.

� State transition kernels. a policy π ∈ ∆O
A induces a transition kernel pπ ∈ ∆A

S .

� Induced state action Markov process. An initial distribution µ ∈ ∆S and policy π ∈ ∆O
A

define a Markov process Pπ,µ on S × A.

� Discounted reward. We fix r ∈ RS×A and for γ ∈ [0, 1) we define

Rµ
γ (π) := EPπ,µ

[
(1 − γ)

∞∑
t=0

γtr(st , at)
]

.

Objective
Study the algebraic and geometric properties of the maximization of the reward Rµ

γ over∆O
A.

The rational degree of the reward function
The following result describes the reward as the fraction of two determinantal polynomials.

Theorem 1. It holds thata

Rµ
γ (π) = (1 − γ) · det(I − γpπ + rπ ⊗ µ)

det(I − γpπ) − 1 + γ,

where rπ ∈ RS is the one step reward defined by rπ(s) :=
∑

a(π ◦β)(a|s)r(s, a). In particular,
the reward function is a rational function in the entries of the policy. If restricted to the subset

Π ⊆ ∆O
A of policies which agree with a fixed policy π0 on all observations outside of O ⊆ O,

the rational degree of the reward function can be upper bounded by

deg(Rµ
γ |Π) ≤ max

π∈Π
rank(pπ − pπ0) ≤

∣∣{s ∈ S | β(o|s) > 0 for some o ∈ O
}∣∣ . (1)

Analogue statements can be made for the value function and the state-action frequencies,

which are both important objects in Markov decision processes.

aHere, ⊗ denotes the Kronecker product.

State-action frequencies
A short calculation shows Rµ

γ (π) = 〈r , ηπ,µ
γ 〉S×A, where

ηπ,µ
γ (s, a) := (1 − γ)

∞∑
t=0

γtPπ,µ(st = s, at = a)

is called the state-action frequency of π. We denote the set of all state-action frequencies in

the fully and in the partially observable case by

N µ
γ :=

{
ηπ,µ

γ ∈ ∆S×A | π ∈ ∆S
A
}

⊆ ∆S×A and N µ,β
γ :=

{
ηπ,µ

γ ∈ ∆S×A | π ∈ ∆O
A
}

⊆ N µ
γ .

The reward maximization problem is equivalent to the maximization of a linear function over

the setN µ,β
γ of state-action frequencies. It is well known that the state-action frequenciesN µ

γ

of a fully observable Markov decision process form a polytope.

Proposition 2 (Characterisation of N µ
γ ). It holds that

N µ
γ = [0, ∞)S×A ∩

{
η ∈ RS×A | 〈w s

γ , η〉S×A = (1 − γ)µs for s ∈ S
}

,

where w s
γ = δs ⊗ 1 − γα(s|·, ·). In particular, N µ

γ is a subpolytope of [0, ∞)S×A, which is

contained in an affine subspace with orientation only depending on γ and α.

Remark 3. By Theorem 1 the set N µ,β
γ of state-action distributions possesses a rational

parametrization and is therefore a semialgebraic set by the Tarski-Seidenberg theorem and

we will describe the defining polynomial inequalities in Theorem 4 and (2).

State-action frequencies of partially observable models

In partially observable models only the policies in the effective policy polytope ∆S,β
A ⊆ ∆S

A
can be realized. In order to understand the polynomial inequalities defining the state-action

frequencies, we need to understand how linear inequalities in the policy polytope∆S
A behave

in N µ
γ . Since the inverse of π 7→ ηπ,µ

γ is given by conditioning it holds that∑
s∈S,a∈A

bsaπsa ≥ c ⇔
∑
s∈S

∑
a∈A

bsaηsa
∏

s′∈S\{s}

∑
a′∈A

ηs′a′ ≥ c
∏
s′∈S

∑
a′∈A

ηs′a′ . (2)

Using this principle we can derive the following abstract result.

Theorem 4. Under mild conditions we have N µ,β
γ = N µ

γ ∩ V ∩ B, where V is a variety gener-

ated by multi-homogeneous polynomials and B is a basic semialgebraic set described by multi-

homogeneous polynomial inequalities. The face lattices of∆S,β
A and N µ,β

γ are isomorphic.

Using (2) one can obtain an explicit polynomial expression for the set N µ,β
γ . If for example β

has independent columns and if we set So := {s ∈ S | β+
os 6= 0}, the semialgebraic set B from

Theorem 4 is described by the multihomogeneous inequalities

pao(η) :=
∑
s∈So

(
β+

osηsa ·
∏

s′∈So\{s}

∑
a′

ηs′a′

)
≥ 0 for all a ∈ A, o ∈ O.

Number of critical points of reward maximization
By Theorem 4, the problem of reward maximization is equivalent to the maximization of a

linear function subject to polynomial constraints. Hence, one can use the general theory of

algebraic degrees of polynomial optimization to bound the number of critical points of the

reward function, see [NR09,MM21]. In special cases one can refine those general bounds using

the special algebraic structure of the polynomial constraints to obtain the following result.

Proposition 5. Let (S, O, A, α, β, r) be a POMDPdescribing a blind controllerwith two actions,

i.e., O = {o} and A = {a1, a2} and let r , α and µ be generic and let γ ∈ (0, 1). Then the

reward function Rµ
γ has at most |S| critical points in the interior int(∆O

A) ∼= (0, 1).

Illustration of the results
We want to illustrate our results for a POMDP with two states, two actions and two observa-

tions, for details see [MM21].

The top row shows the observation policy polytope ∆O
A; the associated state policy polytope

∆S
A (yellow) and the subset of effective policies ∆S,β

A (blue); and the corresponding sets of

discounted state-action frequencies in the simplex∆S×A (a tetrahedron). The bottom shows

the graph of the discounted reward Rµ
γ as a function of the observation policy π; the state

policy τ ; and the discounted state-action frequencies η.

Conclusion
� The degree of observability directly relates to the rational degree of the reward function.

� The state-action frequencies form a basic semi-algebraic set.

� Reward maximization is equivalent to a polynomially constraint optimization problem

with linear objective.References
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