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Notation of Markov decision processes
� State, oberservation, action spaces. finite sets S, O and A.

� Observation mechanism. Markov kernel β ∈ ∆S
O.

� Action mechanism. Markov kernel α ∈ ∆S×A
S .

� Policies and effective policies. Markov kernels π ∈ ∆O
A; every policy π ∈ ∆O

A induces an

effective policy π ◦ β ∈ ∆S
A.

� Effective policy polytope. Πβ := {π ◦ β | π ∈ ∆O
A} ⊆ ∆S

A.

� State action and state transition kernels. a policy π ∈ ∆O
A induces transition kernels

Pπ ∈ ∆S×A
S×A and pπ ∈ ∆A

S .

� Induced state action Markov process. An initial distribution µ ∈ ∆S and policy π ∈ ∆O
A

define a Markov process Pπ,µ on S × A.

� Discounted reward. We fix r ∈ RS×A and for γ ∈ [0, 1) we define

Rµ
γ (π) := EPπ,µ

[
(1 − γ)

∞∑
t=0

γtr(st , at)
]

.

Factorisations of the reward function
An application of Fubini’s theorem to the definition ofRµ

γ showsRµ
γ (π) = 〈r , ηπ,µ

γ 〉S×A, where

we call

ηπ,µ
γ := (1 − γ)

∞∑
t=0

γtPπ,µ(st = ·, at = ·) ∈ ∆S×A

the discounted stationary distribution of π. Hence, the reward function Rµ
γ factorises in non

linear and linear parts according to

π 7→ π ◦ β 7→ ηπ,µ
γ 7→ 〈r , ηπ,µ

γ 〉S×A.

Objective
Study the algebraic and geometric properties of the set of discounted stationary distributions

and of the mapping π 7→ ηπ,µ
γ since they encode the complexity of reward maximisation.

The rational degree of of discounted stationary distributions
Proposition 1 (Characterisation of discounted stationary distributions). Let ρπ,µ

γ denote the

state marginal of ηπ,µ
γ . It holds that

ηπ,µ
γ = (1 − γ)(I − γPT

π )−1(µ ∗ (π ◦ β)) and ρπ,µ
γ = (1 − γ)(I − pT

π )−1µ. (1)

Applying Cramer’s rule to (1) yields

ηπ,µ
γ (s, a) = π(a|s)ρπ,µ

γ (s) = π(a|s) · det(I − γpT
π )µ

s
det(I − γpT

π ) ,

where (I − γpπ)µ
s is the matrix that is obtained by replacing the s-th column of (I − γpπ) by µ.

Computing the degree of multivariate determinantal polynomials gives the following result.

Theorem 1 (Rational degree). The reward function, the value function and the discounted sta-

tionary distribution ηπ,µ
γ are rational functions in the entries of the policies. Restricted to the

subset Π ⊆ ∆O
A of policies which agree with a fixed policy on all states outside of O ⊆ O their

degree is upper bounded by∣∣{s ∈ S | β(o|s) > 0 for some o ∈ O
}∣∣ .

The polytope of discounted stationary distributions
We consider the fully observable case now, i.e. the case where β admits a left inverse and let

us denote the set of all discounted stationary distributions with N µ
γ .

Proposition 2 (Characterisation of N µ
γ ). It holds that

N µ
γ =

(
ηµ

γ + {w s
γ | s ∈ S}⊥) ∩ ∆S×A,

wherew s
γ = δs ⊗1−γα(s|·, ·). In particular,N µ

γ is a subpolytope of∆S×A, which is contained

in an affine subspace with orientation only depending on γ and α.

Theorem 2 (Combinatorial equivalence ofN µ
γ and∆S

A). Themapping π 7→ ηπ,µ
γ induces an or-

der preservingmorphism of the face lattices of∆S
A andN µ

γ . If further ρπ,µ
γ > 0 holds entrywise

for all policies π ∈ ∆O
A, then this is an isomorphism.
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The case of partial observability
In the partially observable case, the set of discounted stationary distributions is typically not

a polytope, but by the Tarski-Seidenberg theorem, it still is a semi-algebraic set. In order to

understand its defining inequalities, it is necessary to understand how linear inequalities in the

policy polytope ∆S
A behave in N µ

γ . Since the inverse of π 7→ ηπ,µ
γ is given by conditioning, a

linear inequality of the form ∑
s∈S,a∈A

bsaπsa ≤ c,

corresponds to the polynomial inequality

c
∏
s′∈S

∑
a′∈A

ηs′a′ ≥
∑
s∈S

∑
a∈A

bsaηsa
∏

s′∈S\{s}

∑
a′∈A

ηs′a′ ,

which is a polynomial inequality of degree at most |S|. Computing the defining inequalities of

the effective policy polytope yields the following result.

Theorem 3 (Defining polynomial inequalities). Let β be invertible and set So := {s ∈ S |
β−1

os 6= 0}. Then η ∈ N µ
γ is a discounted stationary distrbution of the POMDP if and only if

−
∑
s∈So

(
β−1

os ηsa ·
∏

s′∈So\{s}

∑
a′

ηs′a′

)
≤ 0 for all a ∈ A, o ∈ O.

A toy example
Let us consider a toy example with S = A = {1, 2} and the following transition model α.

1 2
2

1
1 2

Further, we consider the observation space O = {1, 2} and the observation mechanism

β(1|si) = 1 − δi2/2. The defining two quadratic inequalities in the discounted state action

polytope N µ
γ are given by

η11η22 − η21η11 − 2η21η12 ≤ 0
η12η21 − 2η22η11 − η22η12 ≤ 0.

In the following plot, the entire polytope of discounted stationary distributions for the fully

observable case and its subset corresponding to the observationmechanism β are shown. The

black lines show a three dimensional projection of the probability simplex∆S×A ∼= ∆3.

Conclusion and outlook
� The degree of observability directly relates rational degree of the discounted stationary

distributions.

� The set of discounted stationary distributions is a semi-algebraic subset of∆S×A defined

by a set of linear equalities Aη = b and polynomial inequalities p(η) ≤ 0, where

– A depends on γ and α,

– b depends on µ, γ and α,

– p depends only on β and is homogeneous and square free.
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