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Setting: Definitions and notations

(i) Let Ω := RZd be the configuration space and let ΩΛ := RΛ be the finite
volume configuration space for a finite subset Λ of Zd which we denote
by Λ b Zd. We will endow them with the product σ field F and FΛ

respectively. The elements of Ω and ΩΛ are called configurations or field.

(ii) A random field on Zd or Λ is a probability measure on Ω or ΩΛ respec-
tively and we write µ ∈ M1(Ω) or µ ∈ M1(ΩΛ). Sometimes we will not
distinguish between the measure µ and a field φ drawn according to µ.

(iii) Further the finite volume Hamiltonian or free energy of a configuration
φ ∈ Ω as

HΛ,m(φ) :=
1

4d

∑
x∼y

(
φx − φy

)2
+
m2

2

∑
x∈Λ

φ2
x =:

1

4d
(∇φ,∇φ)Λ +

m2

2
(φ, φ)Λ

where the first sum is taken over all neighboring sides x and y (denoted
by x ∼ y) such that x or y is contained in Λ. The quantity m ≥ 0 is
called the mass of the system and in the case m = 0 the system is called
massless and massive for m > 0.

(iv) The finite volume Gibbs measure with boundary value η ∈ Ω is defined as
the probability measure on Ω such that

γηΛ,m(A) ∝
∫
RΛ

e−HΛ,m(φ)χA(φΛηΛc)
∏
x∈Λ

dφx

where φΛηΛc denotes the field which is obtained by changing the values
of φ outside of Λ to the ones of η. Obviously the Gibbs measure γηΛ,m is
supported by the set of configurations which agree with η outside of Λ,
which explains the terminology of boundary conditions.

(v) We say a random field µ ∈ M1(Ω) is an infinite volume Gibbs measure if
it satisfies the consistency condition

µ(A | FΛc)(η) = γηΛ,m(A) for all Λ b Zd.

A field φ can be seen as a random surface over Zd. The Hamiltonian of a
configuration should be thought of as a measurement of internal energy of a
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configuration φ and the first term of the Hamiltonian penalises high differences
between neighboring points, the second one penalises high absolut values of the
field. It is intuitive that those two phenomena are energetically unfarourable in
the sense that a surface tends to avoid being stretched and also tends to stay
rather close to the ground(?) if it is made out of massive material. The finite
volume Gibbs measure implements the physical principle that high energy states
are unlikely to occur because it assigns a low probability to the configurations
with a high free energy. The consistency condition of a infinite volume Gibbs
measure should be thought of as that if we are given that the field coincides
outside of Λ with η then we recover the finite volume Gibbs measure.

In the following we will investigate the existence of infinite volume Gibbs
measures which are closely related to the reccurence and transienity of certain
random walks. Further we will give a probabilistic solution of the discrete
Dirichlet boundary problem using this same random walk.

Thermodynamic limit

We will investigate the limiting behaviour of Gaussian measures on finite volume
subspaces ΩΛ ⊂ Ω, where each finite volume configuration is just extended onto
Zd by setting it zero outside of Λ. In an analogue manner we interpret a random
field on Λ as a random field on Zd. Before we can state the theorem we shall
note that we call a measure Gaussian, if all his finite dimensional marginals are

Gaussian. Further we say it has mean a ∈ Ω and covariance Σ ∈ RZd×Zd if for
every finite subset Λ b Zd the finite dimensional projection onto Λ has mean aΛ

and covariance ΣΛ where they denote the restriction of the vector and matrix
respectively.

1 Theorem (Thermodynamic limit). Let Bn be the n-ball in Zd and let µn ∈
M1(ΩBn) be Gaussian measures with mean aBn and covariance structure ΣBn .
Assume further

aBn → a and ΣBn → Σ

entrywise. Then the following two statements hold.

(i) There is a unique Gaussian field µ on Zd with mean a and covariance Σ,
i.e. the finite dimensional projections µΛ onto Λ b Zd are Gaussian with
mean aΛ and covariance ΣΛ.

(ii) The finite dimensional projections of µn converge weakly towards the one
of µ, i.e.

(µn)Λ → µΛ weakly for all Λ b Zd.

Proof. The first claim follows just from Kolmogorovs extension theorem and
the apparent fact that the declaration of the finite dimensional marginals is
consistent. The second statement is due to the convergence of the mean and
covariance matrix and can be checked again by taking the Fourier transforms
of the measures.

In the following we will show that the finite volume Gibbs measures γηΛ,m are
Gaussian with mean uΛ and covariance GΛ where u is the so called m-harmonic
extension of η, i.e. it solves the massive Dirichlet problem(

− 1

2d
∆ +m2

)
u = 0 in Λ and u = η in Λc
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and GΛ is the Greens function of a suitable random walk. Note that the discrete
Laplace operator is given by

(∆u)x :=
∑
y∼x

(
uy − ux

)
.

The study of those Greens functions and their convergence for Λ → Zd can
then be used to either construct infinite volume Gibbs measures (if the Greens
function converges) or show the non existence of infinite volume Gibbs measures
(if it blows up).

The massless case

We defined the finite volume Gibbs measure over its Lebesgue density and in
order to show that it is Gaussian we need to rewrite that density as a normal
density, which we will achieve by convert the Hamiltonian as a quadratic func-
tion in φ. Precisely we note that we obtain for a harmonic extension u of η (the
existence of such a u will be shown later)

1

2d
(∇φ,∇φ)Λ = (φΛ − uΛ) ·

(
− 1

2d
∆Λ

)
(φΛ − uΛ) +B(η)

via partial integration, where the boundary terms only depend on the boundary
terms of u and of φ which are γηΛ,0 almost surely η. The discrete Laplace matrix

∆Λ is the restriction of the discrete Laplace matrix on Zd, which is given by

∆(x, y) :=


−2d if x = y

1 if x ∼ y
0 otherwise

.

Note that we do not have to care about the boundary term B(η) since it will
cancel out in the normalisation of the measure. Assume for one second that the
matrix − 1

2d∆Λ has in inverse GΛ, then we would know that the Gibbs measure
is Gaussian with mean uΛ and covariance GΛ. To convince ourselves that the
inverse actually exists, we note − 1

2d∆Λ = I − PΛ where P is the transition
matrix of a simple symmetric random walk (SSRW) on Zd, i.e.

P (x, y) :=

{
1
2d if x ∼ y
0 otherwise

.

Further we have ‖PΛ‖ < 1 and thus the inverse, called the Greens function, GΛ

exists and is given by the Neumann series

GΛ =
∑
n≥0

PnΛ .

Evaluating this at (x, y) this yields

G(x, y) =
∑
n≥0

Px(Xn, τΛc < n) = Ex
[
# {n ≥ 0 | Xn = y, τΛc < n}

]
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where (Xn) is a SSRW and τΛc is the exit time from Λ. This means that the
value of the Greens function G(x, y) is the expected number of visits of a SSRW
in y if it starts in x and is killed when it hits the boundary of Λ.

So far we have assumed the existence of a harmonic extension u of η onto Λ
and postponed the prove. Interestingly u can also be constructed through the
SSRW by setting

ux := Ex
[
ηXτΛc

]
.

Obviously u is an extension of η and further it is harmonic in Λ by

ux = Ex

[
Ex
[
ηXτΛc

∣∣X1

]]
=
∑
y∼x

1

2d
Ey
[
ηXτΛc

]
=
∑
y∼x

1

2d
uy,

where we used the Markov property.
Since the procedure will be analogue in the massive case, we shall shortly

recall the main steps of our argument:

(i) Rewrite the Hamiltonian as a quadratic form – modulo the existence of a
harmonic extension.

(ii) Invert the matrix to conclude that the Gibbs measure is Gaussian, this is
done by the so called random walk representation.

(iii) Solve the Dirichlet problem with boundary values η – again through the
random walk represenation. This shows that step one was possible.

The theory of random walks tells us now

GBn(0, 0) ≈

{
n for d = 1

log(n) for d = 2

and further it converges for d ≥ 3 since the SSRW is transient in that case.
Those results can be used to show the non existence of a infinite volume Gibbs
massless measure in dimension d = 1, 2 and the existence of infinitely man
Gaussian Gibbs measures in dimension d ≥ 3. Further note that the behaviour
of the Greens function in one dimension should come as no big suprise, since
Donskers invariance principle tells us, that a (pinned down) random walk has
to be scaled by 1√

n
to obtain a non trivial but well defined limiting object.

The massive case

As already mentioned the approach is completely analogue to the massless case
with only some minor adjustments. More precisely for a m-harmonic extension
u of η we get

2 ·HΛ,m(φ) = (φΛ − uΛ) ·
(
− 1

2d
∆Λ +m2

)
(φΛ − uΛ) +B(η).

Now we have

− 1

2d
∆Λ +m2 = (1 +m2)I − PΛ = (1 +m2)

(
I − P̂Λ

)
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where P̂ = (1 + m2)−1P is the transition matrix of a SSRW that gets killed

randomly with probability m2

1+m2 . Thus the covariance is now given by

G(x, y) =
1

1 +m2

∑
n≥0

Px(Yn, τΛc < n) =
1

1 +m2
Ex
[
# {n ≥ 0 | Yn = y, τΛc}

]
where (Yn) is a SSRW with random killing. Further it can easily be checked
that the m-harmonic extension of η is given by

ux := Ex
[
ηYτΛc

]
.

Since the SSRW with a positive killing probability is transient in every di-
mension, the Greens function converges always and this can be used to construct
a Gaussian field on the whole lattice Zd which is a weak limit of Gibbs measures
and it can be shown that it is Gibbsian again. This method is again completely
analogue to the massless case (where it is only applicable if d ≥ 3). Further the
random walk representation can be used to show a CLT like theorem.

2 Theorem (CLT for lattice structure). Let µ be a centered and massive infinite
volume Gibbs measure. Further let ΛN := (−N,N ]d be the N -box and let φ ∼ µ.
Then one has

1

(2N)d/2
·
∑
x∈ΛN

φx → N (0,m−2).

Proof. Obviously the random variables on the left hand side are all centered
Gaussians and therefore we only have to check the convergence of the variance.
Note that it is enough for that to show∑

x∈Zd
Eµ[φ0φx] = m−2.

However this holds since the left side equals∑
x∈Zd

G(0, x) =
∑
x∈Zd

E0

[
# {n ≥ 0 | Xn = y, τ? < n}

]
= E0[τ?] = m−2,

where τ? is the time the random walk gets killed.

The above CLT like result is actually not really surprising in the light that
one can show that the correlation between the φx and φy (which is just G(x, y))
decays exponentially with ‖x− y‖ → ∞ and thus this is only a CLT for weakly
correlated random variables.
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