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Abstract

We present a short and fully self contained overview of the most commonly used topo-
logical principles in functional analysis, the most important one being the concept of the
initial topology. A solid understanding of this is not only necessary for the weak topolo-
gies in topological vector spaces but also in the study of the so called weak topology of
probability measures.

Definitions and basic properties

1 Definition (Topology). Let X be a set. Then we call � � P.X/ a topology, if we have

(i) ∅; X 2 � ,

(ii) � is stable under finite intersections and

(iii) � is stable under arbitrary unions.

The tuple .X; �/ or sometimes X itself is called topological space.

Let from now on .X; �/ and .Y; �/ always be a topological spaces unless other specified.

2 Example. By far the most important example for a topology is the system of open sets in metric
spaces.

3 Definition. A subset A of a topological space X is called

(i) open if A 2 � ,

(ii) closed if Ac WD X n A 2 � ,

(iii) neighborhood of x 2 X if there is an open set U � A which contains x. The set of all neighbor-
hoods of x is denoted by N.x/.

4 Remark. A set is open if and only if it is a neighborhood of all of its points.

5 Definition (Continuity). Let .X; �/; .Y; �/ be topological spaces and f W X ! Y . Then f is said
to be continuous in x 2 X if for all U 2 N.f .x// we have a V 2 N.x/ such that

f .V / � U;

i.e. if the preimages of all neighborhoods of f .x/ are neighborhoods of x. Further f is called continuous
if it is continuous in all points x 2 X .

6 Remark. A function f is continuous if and only if the preimages of all open sets are open, or in a
formula if we have f �1.�/ � � .
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7 Definition (Convergence). A sequence .xn/n2N a topological spaceX is said to converge towards
some x 2 X if for every neighborhood N of x there is an natural number n0 such that

xn 2 N for all n � n0

holds. We write xn !� x or xn ! x if the topology is unambiguous.

8 Definition (Sequential continuity). A function f W X ! Y between two topological spaces
X and Y is said to be sequentially continuous in x 2 X if we have f .xn/ !� f .x/ for all sequences
xn !� x. Again f is called sequentially continuous itself if it is sequentially continuous in all x 2 X .

9 Definition (Neighborhood basis). A set B of neighborhoods of x is said to be a neighborhood
basis in x if for every neighborhood U 2 N.x/ there is a V 2 B with

x 2 V � U:

10 Proposition. Let .X; �/; .Y; �/ be topological spaces and f W X ! Y .

(i) If f is continuous in x 2 X then it is also sequentially continuous in x.

(ii) Assume that .X; �/ has a countable neighborhood basis in x 2 X and that f is sequentially con-
tinuous in x, then f is continuous in x.

Proof. Let f be continuous in x 2 X; xn !� x and U be a neighborhood of f .x/. Then there is a
neighborhood V of x and a natural number n0 such that

f .xn/ 2 f .V / � U for all n � n0

and therefore f is sequentially continuous in x.
Assume that f is not continuous in x and that � has a countable neighborhood basis in x. Further

let wlog the neighborhood basis B D .Vn/n2N of x be decreasing, i.e. VnC1 � Vn. Let now U be a
neighborhood of f .x/ such that f �1.U / … N.x/. Then for every n 2 N we find an element

xn 2 Vn n f
�1.U / ¤ ∅:

Now we have xn !� x but f .xn/ 6!� f .x/ and therefore f can’t be sequentially continuous in x.

11 Proposition. LetX be a set and �; � be two topologies with countable neighborhood bases in every
point. Then � and � agree if and only if they induce the same converging sequences, i.e. a topology with
countable neighborhood basis in every point is uniquely determined by its converging sequences.

Proof. The topologies � and � induce the same converging sequences if and only if

idX W .X; �/! .X; �/ and id�1X W .X; �/! .X; �/

are sequentially continuous. As � and � have countable neighborhood basis in every point this is equivalent
to the statement, that idX and id�1X are continuous which is the case if and only if � and � agree.

12 Definition (Sequentially closed). Let A be a subset of the topological space .X; �/. Then A is
said to be sequentially closed if for all sequences .xn/n2N � A and x 2 X with xn !� x 2 X we have
x 2 A.

13 Proposition. Let .X; �/ be a topological space and A � X .

(i) If A is closed, then A is also sequentially closed.

(ii) Assume that � has countable neighborhood basis in every point and that A is sequentially closed,
then A is closed.

Proof. Similar to the proof of Proposition 10.
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14 Remark. The above results hold in particular for metric spaces as a countable neighborhood basis
in x is given by ˚

B".x/ j " > 0; " 2 Q
	
:

15 Definition (Closure, interior, boundary). The closure A of A � X is the smallest closed set
that contains A and the interior int.A/ is the largest open set that is contained in A, i.e.

A WD
\

B�A;Bc2�

B and A WD
[

U�A;U2�

U:

Further @A WD A n int.A/ is called the boundary of A.

16 Definition (Compactness). A subset K of a topological space .X; �/ is called compact if every
open cover .Ui /i2I of K contains a finite subcover .Uj /j2J . The set K is called relatively compact if A
is compact.

17 Remark. Note that subsets of compact sets are always relative compact.

18 Definition (Sequential compactness). Let K � X be a subset of a topological space. Then K
is called sequentially compact if every sequence .xn/n2N � K contains a subsequence that converges in
K. Further K is called relatively sequentially compact if A is compact.

We have seen so far that the topological definitions implied the sequential ones. However this is not
true for all terms as neither compactness implies sequential compactness nor the other way round (for the
first ‚nonimplication‘ we will give an example later on). However if we have a countable neighborhood
basis in every point we find the once again the topological term is stronger.

19 Proposition. Let .X; �/ be a topological space with countable neighborhood basis in every point
and let K � X be compact. Then K is also sequentially compact.

Proof. Let .V xn /n2N be the countable neighborhood basis of x and assume that the neighborhoods are
decreasing. Let now .xn/n2N � K be a sequence and assume that is has no subsequence that converges in
K. Then for x 2 K we find an open neighborhood V x 2 N.x/ such that there are only finitely many xn in
V x . Otherwise we could find xnk

2 V x
k
for every k 2 N and would therefore end up with a subsequence

.xnk
/k2N that converges towards x. Take now a finite subcover of .Vx/x2K , then we have

K �

m[
kD1

V xk

and thus we have only finite many xn 2 K which is a contradiction.

A principle of convergence and a non topological convergence

20 Proposition. Let .X; �/ be a topological space and .xn/n2N. Then .xn/n2N converges towards
some x 2 X if and only if every subsequence of .xn/n2N contains a subsequence that converges towards
x.

Proof. If we have xn !� x then every subsequence itself converges to x.
In the case that xn 6!� x, we find a neighborhoodU of x and infinitely many nk 2 N such that xnk

… U

for all k 2 N. Then the subsequence .xnk
/k2N contains no subsequence that converges towards x.

21 Example. With the aid of the above principle it is easy to show that the convergence almost ev-
erywhere is in general not a topological convergence, i.e. that there is no topology on the measurable
functions that induces the convergence almost everywhere. To see that we take a sequence .fn/n2R � L1
that converges in L1 towards some f 2 L1 but not almost surely, for example

f1 WD �Œ0;1�; f2 WD �Œ0; 1
2 �
; f3 WD �Œ 1

2 ;1�
; f4 WD �Œ0; 1

4 �
; : : : 2 L1.Œ0; 1�/:
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Then we have fn !L1.Œ0;1�/ 0 but not fn ! 0 almost everywhere (actually fn 6! f everywhere). On
the other hand every subsequence converges to 0 in L1.Œ0; 1�/ and therefore it contains a subsequence that
converges to 0 almost everywhere. If the convergence almost everywhere would be a topological one, then
the above principle would imply fn ! 0 almost everywhere which is not true.

Hausdorff spaces

22 Definition (Hausdorff space). A topological space .X; �/ is called aHausdorff space if there are
disjoint neighborhoods U 2 N.x/; V 2 N.y/ for all x; y 2 X with x ¤ y .

23 Proposition (Uniqueness of limit points). Let .X; �/ be a Hausdorff space and let .xn/ � X
be a sequence converging to both x and y. Then x D y holds.

Proof. Elementary.

24 Proposition. Let .X; �/ be a Hausdorff space and let K � X be compact. Then K is closed.

Proof. Let x 2 Kc . We only have to show that there is an open set U 2 N.x/ such that U \K D ∅. For
y 2 K let Uy 2 N.x/; Vy 2 N.y/ be disjoint open neighborhoods. Than we have

K �
[
y2K

Vy

and as K is compact there is a finite subcover

K �

n[
iD1

Vyi
:

Now U WD
Tn
iD1 Uyi

� Kc is an open neighborhood of x.

Initial topologies

25 Definition. Let X be a set and �; � � P.X/ be two topologies on X . If � � � , we say that � is
coarser than � and that � is finer than � .

26 Definition (Induced topology). Let X be a set and E � P.X/. Then we call the coarsest
topology � that contains E the topology that is induced by E .

27 Remark. The induced topology � is nothing but the intersection of all topologies onX that contain E
which also shows the well definedness. This concept is completely analogue to the one of induced sigma
fields. One major difference is that you can still give the explicit structure of the induced topology – a
thing that you should never ever try in the case of sigma fields.

28 Lemma (Induced topology). Let X be a set and E � P.X/. The induced topology consists of
all arbitrary unions of finite intersections of sets in E [ f∅; Xg.

Proof. It is clear that these sets have to be in the induced topology, so if we convince ourselves that the
system � of all arbitrary unions of finite intersections of sets in E[fXg is a topology we are done. However
∅; X 2 � is clear and also � is stable under arbitrary unions via definition. Further it is also stable under
finite intersections as we have �[

i2I

Ai

�
\

�[
j2J

Bj

�
D

[
i2I;j2J

Ai \ Bj :
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29 Definition (Basis and subbasis). If a topology � is induced by E then we call E a subbasis of � .
If � consists of all arbitrary unions of sets in E we say that E is a basis of � .

30 Remark. The previous lemma tells us that a system E of sets is a subbasis of a topology � if and
only if the system of finite intersections of elements in E [ f∅; Xg is a basis of � .

31 Definition (Initial topology). LetX be an arbitrary set and let ffigi2I be a family of mappings
fromX into topological spaces .Xi ; �i /. Then the initial topology � D �.ffigi2I / is the coarsest topology
such that the mappings

fi W X ! Xi

are continuous.

32 Remark (Subbasis of the initial topology). By definition a subbasis of the initial topology is
given by n

f �1i .U / j i 2 I; U 2 �i

o
:

33 Proposition (Continuity wrt the initial topology). Let ffigi2I be a family of mappings
from X to topological spaces .Xi ; �i /. Let further be .Y; �/ be a topological space and let ' W Y ! X .
Then ' is continuous wrt the initial topology if and only if fi ı ' is continuous for all i 2 I .

Proof. One implication is obvious as the composition of continuous maps is continuous. Let now be 'ıfi
continuous for all i 2 I . Note that a mapping is continuous if and only if the preimages of all sets in a
subbasis are open. This finishes the prove as we have

'�1
�
f �1i .U /

�
2 �:

34 Proposition (Convergence wrt the initial topology). Let ffigi2I be a family of mappings
fromX to topological spaces .Xi ; �i /. Then .xn/ � X converges towards x 2 X wrt to the initial topology
if and only if fi .xn/! fi .x/ for all i 2 I .

Proof. Again one implication is obvious, so let now fi .xn/! fi .x/ hold for all i 2 I . Consider the map

' W Y WD
n1
n

ˇ̌
n 2 N

o
[ f0g ! X;

1

n
7! xn; 0 7! x;

where Y is equipped with the usual topology. Then the maps fi ı ' are all (sequentially) continuous and
therefore ' is continuous and we get xn ! x.

35 Proposition (Hausdorff property). Let ffigi2I be a family of mappings fromX to topological
spaces .Xi ; �i /. Then the initial topology is Hausdorff if and only if for two points x; y 2 X; x ¤ y there
is a mapping fi and disjoint neighborhoods U 2 N.fi .x// and V 2 N.fi .y//.

Proof. Use the fact that a topology is Hausdorff if and only if we have x 6! y for all x ¤ y in combination
with the previous proposition.

Now that we know the structure of initial topologies we can introduce the two most important examples.
Especially the so called weak topologies will be of big interest as we will prove some compactness results
for them later on. However in the main prove of those results we will see that the weak topologies have
the same structure as a product topology.

36 Example (Product topology). Let .Xi ; �i / be a family of topological spaces and let

X WD
Y
i2I

Xi :

Then the product topology on X is the initial topology of the canonical projections �i W X ! Xi .
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37 Example (Weak topology). Let X be a normed space. Then the weak topology is the initial
topology of the dual space X 0 and is denoted by �.X;X 0/. The weak-� topology is the initial topology of
all the evalutions

evalx W X 0 ! K; evalx.f / D f .x/

and is denoted by �.X 0; X/. It is clear that the weak topologies are coarser than the topology induced by
the norm and that �.X 0; X/ � �.X 0; X 00/ holds.

Metric spaces

38 Definition. Let .X; d/ be a metric space and A � X . Then A is called totally bounded if for every
" > 0 there is a finite "-cover, i.e. there exists a finite series of balls B".xk/; xk 2 K for k D 1; : : : ; N

such that

A �

N[
kD1

B".xk/:

39 Proposition. Let .X; d/ be ametric space andK � X then the following statements are equivalent:

(i) K is compact.

(ii) K is sequentially compact.

(iii) K is totally bounded and complete.

Proof. (i))(ii) is just the statement of Proposition 19.
Let now K be sequentially compact. We first show that it is also complete, so let .xn/ be a Cauchy

sequence. By the sequential compactness we can extract a subsequence .xnk
/ converging to x but then

the whole sequence already converges to x. For the total boundedness assume the existence of " > 0 such
that there is no finite "-cover of K. Then we could construct a sequence .xn/ such that

xnC1 2 K n

n[
kD1

B".xk/

and this sequence could not have a converging subsequence.
Assume now that (iii) holds. Let now .Ui /i2I be an open cover of K which does not contain a finite

subcover. Construct now a sequence of balls Bn D B2�n.xn/ with xn 2 K and Bn \ Bn�1 ¤ ∅ auch
that Bn\K has no finite subcover .Uj /j2J . To get Bn choose a finite 2�n-cover of Bn�1\K and choose
a 2�n ball that has no finite subcover .Uj /j2J . Now .xn/ is a Cauchy sequence and therefore converges
to x 2 K. Choose Ui such that x 2 Ui , then we have by definition Bn � Ui for n large enough which is
a contradiction to the construction of Bn.

40 Definition. Let .X; dX / and .Y; dY / be two metric spaces. Then a mapping f W X ! Y is called
uniformly continuous if for every " > 0 there is a ı > 0 such that

dY
�
f .x/; f .y/

�
< " for all x; y 2 X with dX .x; y/ < ı:

41 Remark. Uniformly continuous function map Cauchy sequences onto Cauchy sequences.

42 Proposition (Extension of uniformly continuous maps). Let .X; dX / and .Y; dY / be two
metric spaces where Y is complete and let D � X be dense. Further let f W D ! Y be uniformly
continuous than there is exactly one (uniformly) continuous extension of f onto X .

Proof. We first convince ourselves that there is at most one continuous extensions. Assume that Of is such
an extension and x 2 X then choose a sequence .xn/n2N � D with xn ! x and we get

Of .x/ D lim
n!1

Of .xn/ D lim
n!1

f .xn/ (1)
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which shows the uniqueness. So we now use (1) as the definition of the extension Of . To see that this is
well defined we first not that for a fixed approximating sequence .xn/ the right hand side converges as f
maps Cauchy sequences to Cauchy sequences and Y is complete. Further the limit on the right hand side
is independent of the sequence .xn/. If we take two approximations .xn/ and .yn/ then the sequence

.x1; y1; x2; y2; : : : /

is also an approximation and therefore a Cauchy sequence. But then

.f .x1/; f .y1/; f .x2/; f .y2/; : : : /

is also a Cauchy sequence and therefore we have limn f .xn/ D limn f .yn/.
We now have to show that the extension is continuous, so let " > 0 and take ı > 0 like in the defi-

nition of the uniform continuity. Let now x; y 2 X with dX .x; y/ < ı=2 and let .xn/ and .yn/ be two
approximations. Then we have dX .xn; yn/ < ı for all n � Nı and therefore

dY
�
f .xn/; f .yn/

�
< " for all n � Nı :

From that we can conclude dY . Of .x/; Of .y// � " which shows the uniform continuity of Of .

43 Definition. A map f W X ! Y between two metric spaces X and Y is called isometric or an
isometry if it preserves distances, i.e.

dY
�
f .x/; f .y/

�
D dX .x; y/ for all x; y 2 X:

44 Theorem (Cantor completion). Let .X; d/ be a metric space. Then there is an up to an isometry
unique complete metric space . OX; Od/ and an isometry ˚ W X ! OX such that ˚.X/ is dense in OX .

Proof. The proof is not really complicated but rather technical so it won’t be presented in detail, however
the main idea of the proof is very nice. First define the equivalence relation � on the set of sequences in
X through

.xn/ � .yn/ W, lim
n!1

d.xn; yn/ D 0

and denote the Cauchy sequences by CF.X/. Then a completion OX ofX is given by CF.X/= � with the
metric

d OX
�
.xn/; .yn/

�
WD lim

n!1
d.xn; yn/:

Further the isometry ˚ is obtained if we identify a point x 2 X with the constant sequence.
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